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Learning Overview

- Many types of medical imaging data and their respective formats
- DICOM file format is ubiquitous but complex
- Medical imaging data analysis involves many different questions
- Lots of different machine learning paradigms are used to handle challenges of 

medical image data
- Traditional computer vision approaches
- Deep learning enables learning features/representations
- Convolutions key to capturing spatial relationships
- Augmentation and generative models enable better training with limited data
- Transfer learning and joint-transformer models hugely expand training options
- Machine learning in medical image analysis is very promising but has several 

major hurdles to broad acceptance



What kind of image data is there in medicine?



Imaging intensive specialties: Radiology & Pathology

- Radiologists: collection and interpretation of 
medical imaging data (including using imaging 
to guide minimally-invasive procedures). Often 
specialise in body parts or types of imaging. 

- Nuclear Medicine: imaging/intervention 
involving radioisotopes

- Medical Physicists, Technologists, 
Sonographers, Technician 

- Pathologists: study of tissue/samples taken 
from human body, extensive use of microscopy 
and staining. Often specialise in body parts 
and/or analysis methods (e.g., molecular 
pathology)

- Other specialties: many other specialties use 
imaging/image data  emergency medicine

https://commons.wikimedia.org/wiki/File:Radiologist_interpreting_MRI.jpg



Patient can have many imaging modalities 
45 year old male presents to Emergency with abdominal pain:

1. Emergency performs ultrasound finding a kidney lesion
2. Radiology performs CT on lesion suggestive of renal cancer 

needing resectioning by Urology
3. Given tumour size Radiology performs pre-operative MRI to guide 

surgery
4. Oncology request PET-CT to check for metastasis but no evidence
5. Urology resect tumour and send to Pathology who perform 

histopathological slide imaging to confirm renal cell carcinoma
6. Due to high-patient risk, regular follow up PET-CT performed by 

Radiology 
7. Patient returns to Emergency with leg weakness 1-2 years later
8. Radiology performs MRI and identifies a malignant spinal cord 

compression.
9. Radiation oncology perform CT-guided emergency radiotherapy



1-dimensional “image data”

https://microbenotes.com/kirby-bauer-disc-diffusion/aquila biolabs 2020

- Many diagnostic tests 
involve imaging 
(culture density, 
ELISA, antibiotic 
susceptibility testing, 
Illumina DNA 
sequencing)

- Images can be an 
intermediate format

- Intermediate formats 
don’t always need 
stored/further analysed.

- Image analysis trivial 
and/or hard-coded into 
machine 

http://enseqlopedia.com/2014/01/nextseq-500s-new-chemistry-described/



2-dimensional grayscale images: X-ray

https://doi.org/10.1016/S2589-7500(21)00146-1

- Use of x-rays to image bone and soft tissue 
anatomy

- Pro: low radiation dose, cheap, common, quick
- Con: limited tissue density range
- Data type: grayscale image (2D matrix of 

whiteness intensities), many formats but Digital 
Imaging and Communications in Medicine (DICOM) 
standard (size is device/scale dependent) 



2-dimensional colour images: Whole Slide Imaging 

- Digital scanning/photography of 
microscopy slides (including 
staining/fluorescence) 

- Pro: sharing/embedded reports, automated 
analyses, reproducibility

- Con: large images (>10GB), sensitive to 
scanner/preparation

- Data type: 3-channel colour image (3D 
tensor with R,G,B intensities) 
TIF/JPEG2000/DICOM



- X-rays in 1000-5000 slices/helical 
pattern computationally processed 
into pseudo-3D for any organ 
system

- Pro: great capture of anatomical 
detail, fast, broader than X-ray 
(contrast capture of organ/vessels)

- Con: higher radiation dose, 
relatively expensive

- Data Type: reconstructed grayscale 
image (3D matrix of whiteness 
intensities); multiple individual 2D 
grayscale slides; DICOM

Tomographic/2D slices: Computed Tomography (CT)

10.1056/NEJMra072149

Pseudo-coloured 
Dual Energy 
Contrast CT

Clínica Universidad de Navarra, 
Pamplona, Spain / Siemens 
Healthineers



2D video: Fluoroscopy 

- X-ray collected in a time-series with 
contrast medium used to guide 
procedures or evaluate change over 
time (angio.

- Pro: real-time imaging, widely 
available, relatively cheap

- Con: more expensive and higher 
radiation dose than X-ray alone

- Data: Series of 2D grayscale (3D 
tensor): DICOM

https://www.hopkinsm
edicine.org/health/trea
tment-tests-and-thera
pies/cardiac-catheteri
zation



3D imaging: Magnetic Resonance Imaging (MRI)
- 3D images constructed from radiofrequency pulse perturbation of body atoms 

(with a magnetic moment protons>neutrons) aligned by strong magnetic field (with 
or without contrast).  Can be optimised for blood flow (fMRI)

- Pro: detailed multiplanar/3D imaging without contrast, better depiction of soft-tissue 
than CT, no radiation, painless

- Con: Expensive, noisy, lots of required space, susceptible to patient movement => 
can require sedation.

- Data: 3D grayscale tensor; 2D 
grayscale slices; 4D timeseries; 
DICOM

https://imotions.com/blog/eeg-vs-mri-vs-fmri-differences/



4D imaging: Positron Emission Tomography (PET)

- Time-series of detected positrons 
from radiolabelled fludeoxyglucose 
or O-15 to detect tissue/lesions with 
high metabolic activity

- Pro: measures function, painless
- Con: poor anatomy resolution 

(combine with CT/MRI), very 
expensive, radioactive tracer 

- Data: 4D tensor DICOM (5D colour 
PET-CT/MRI or 3D fixed time-point).

- SPECT and fMRI also offer dynamic 
functional imaging options

https://sciencebasedmedicine.org/pet-scans-predict-coma-outcome/



Many formats: Ultrasound
- Uses sound waves and echo pattern 

to image internal structures (soft 
tissue/organ/vessels)

- Pro: real-time imaging, no radiation, 
portable

- Con: operator skill dependent, 
patient anatomy, more expensive 
than X-ray

- Many types: elastography, doppler, 
triplex, transvaginal, endoscopic

- Data type: be rendered as 2D, 
2D-slices, 3D or 4D! DICOM

https://www.renalfellow.org/2020/12/07/basics-of-doppler-ultrasound-for-the-nephrologist-part-2/

HAL Id: tel-01506629

10.1007/s00330-019-06331-4



Overview of medical image data

- Point measure (1D - single value): optical density/turbidity/fluorescence
- Project/Planar imaging (2D matrix of pixels): X-ray
- Tomographic/Multislice Imaging (3D tensor of pixels): a series of images 

representing slices through a volume: CT
- 3-dimensional/Volume (3D tensor of voxels): MRI
- Dynamic Series (4D tensor of voxels): fMRI/PET-CT/MRI

- 45 year old male presents to Emergency with abdominal pain: 100-1000s of 
GB of imaging data in a variety of different imaging formats/modalities (mostly 
as DICOM files)



DICOM Data Format

- Standardised file format split into preamble and 
image information

- Preamble contains key metadata:
- Pixel depth: number of bits encoding each 

pixel/voxel (e.g., 8/32/64-bits)
- Samples per Pixel/Number of Channels: 

number of values encoding each pixel/voxel 
e.g., monochrome = 1 channel, colour = 3 
channels (R,G,B) 

- Spatial resolution: size of smallest discernible 
feature

- Other Embedded Metadata: capture 
frequency/contrast/capture model/patient size 
(important for normalising across your data)

- Image data: image matrix/tensors (nominally integer 
only although scaling is possible)

- Many other proprietary formats exist but DICOM is 
mostly successful as a standard



What kind of analysis task would we want to 
do using these images?



Lots of things we may want to do using medical images

- Image preprocessing: super 
resolution, densification

- Registration: align spatial 
coordinates of images into 1 
common system (PET + MRI)

- Detection: highlighting specific 
elements (anomaly/lesion)

- Segmentation: delineation or 
volume extraction of target object 
(organ/lesion)

- Classification: distinguish classes 
of objects (benign vs malignant 
lesion)

- Monitoring: longitudinal 
measurement of lesion (% of organ 
impacted by lesion)

- Prediction: predicting outcome 
based on image (success of 
chemotherapy)

https://doi.org/10.1186/s13244-019-0832-5



Medical image data is intrinsically challenging

- Lots of modalities with very large image size (but small datasets)
- Non-standardised acquisition (varied devices, set-ups etc)
- Disease patterns in images are very long-tailed
- Labels are sparse and noisy 
- Samples are heterogeneous and imbalanced
- Subjectivity in ground-truth
- Can be impossible to de-identify e.g., facial scans



Unsupervised learning



Label challenges require alternative training paradigms 

Supervised learning
10.1016/j.media.2019.03.009



Label challenges require alternative training paradigms 

Supervised learning

Semi-supervised learning

10.1016/j.media.2019.03.009
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Semi-supervised learning

Multiple Instance Learning

10.1016/j.media.2019.03.009
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Label challenges require alternative training paradigms 

Supervised learning

Semi-supervised learning

Multiple Instance Learning

Transfer Learning

10.1016/j.media.2019.03.009



Traditional Computer Vision

- Thresholding: pixels >= certain set to max
- Edge detection: changes in brightness
- Segmenting: grouping thresholded areas enclosed 

by edges
- Curve detection: edges adjacent to one another
- Optical flow: detection of movement

https://pyimagesearch.com/2021/04/28/open
cv-thresholding-cv2-threshold/



More complex traditional methods

- Scale-Invariant Feature Transform 
(SIFT)

- Speeded Up Robust Features 
(SURF)

- BUT, manual feature engineering is 
difficult, time-consuming, and often 
doesn’t generalise well

10.1016/B978-0-12-814976-8.00005-1

https://stackoverflow.com/questions/51693427/sift-object-matching-in-python



How do we do analyse images without 
feature engineering?



Deep Learning discovers feature representations

https://www.mvtec.com/technologies/deep-learning/classic-machine-vision-vs-deep-learning



Artificial Neural Network
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Backpropagation: gradient of loss with respect to weights



Convolutions capture spatial relations



Convolutions capture spatial relations



Convolutions capture spatial relations

Increasingly higher order learnt representations



Convolutions capture spatial relations

Increasingly higher order learnt representations



Convolutions capture spatial relations

Increasingly higher order learnt representations

- Can use convolutions in more complex architectures (attention, resnets, transformers etc).



Aside: CNNs can be used for non-image spatial data

https://distill.pub/2021/gnn-intro



Aside: CNNs can be used for non-image spatial data

- Graph neural networks

https://distill.pub/2021/gnn-intro



Aside: CNNs can be used for non-image spatial data

- Graph neural networks
- Text data (semantic networks)

https://distill.pub/2021/gnn-intro



- Graph neural networks
- Text data (semantic networks)
- Mutation calling…

Aside: CNNs can be used for non-image spatial data



Didn’t you say training data is hard to get?



Making your data go further: augmentation

- Apply affine and pixel transformations to your data -> more training samples



Feels a bit like manual feature engineering, 
can we automate this?



Yes! Generative Adversarial Network

https://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html



Can we use different image data then tune?



Transfer learning

10.2101.05913



Can we make bad labels better?



Bad text labels, bad images -> why not embed both?

- OpenAI’s Contrastive Language-Image Pre-training (CLIP)
- Use 400 million images trawled from internet (with variable quality labels)
- Initial training: 30 days 592 GPUs -> $1,000,000 equivalent cost



So, can we use these clinically?



Outperforming humans is possible

10.1016/S2589-7500(19)30123-2
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Outperforming humans is possible

10.1016/S2589-7500(19)30123-2



Great, so why don’t we use these all the 
time?



Legal hurdles are daunting but important

- Commercial software for medical images is a medical device
- Regulated as such.
- Regulatory frameworks actively changing/developing
- Requires explanatory power (still a work-in-progress for deep learning)
- Requires acceptance by clinicians
- Can have unpredictable failure modes!
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