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Learning Overview

- Many types of medical imaging data and their respective formats

- DICOM file format is ubiquitous but complex

- Medical imaging data analysis involves many different questions

- Lots of different machine learning paradigms are used to handle challenges of
medical image data

- Traditional computer vision approaches

- Deep learning enables learning features/representations

- Convolutions key to capturing spatial relationships

- Augmentation and generative models enable better training with limited data

- Transfer learning and joint-transformer models hugely expand training options

- Machine learning in medical image analysis is very promising but has several
major hurdles to broad acceptance



What kind of image data is there in medicine?



Imaging intensive specialties: Radiology & Pathology

- Radiologists: collection and interpretation of
medical imaging data (including using imaging
to guide minimally-invasive procedures). Often
specialise in body parts or types of imaging.

- Nuclear Medicine: imaging/intervention
involving radioisotopes

- Medical Physicists, Technologists,
Sonographers, Technician

- Pathologists: study of tissue/samples taken
from human body, extensive use of microscopy
and staining. Often specialise in body parts
and/or analysis methods (e.g., molecular
pathology)

- Other specialties: many other specialties use
imaging/image data emergency medicine




Patient can have many imaging modalities

45 year old male presents to Emergency with abdominal pain:

1.
2.

Emergency performs ultrasound finding a kidney lesion
Radiology performs CT on lesion suggestive of renal cancer
needing resectioning by Urology

Given tumour size Radiology performs pre-operative MRI to gwde
surgery

Oncology request PET-CT to check for metastasis but no evidence
Urology resect tumour and send to Pathology who perform
histopathological slide imaging to confirm renal cell carcinoma
Due to high-patient risk, regular follow up PET-CT performed by
Radiology

Patient returns to Emergency with leg weakness 1-2 years later
Radiology performs MRI and identifies a malignant spinal cord
compression.

Radiation oncology perform CT-guided emergency radiotherapy




1-dimensional “image data”

Many diagnostic tests
involve imaging
(culture density,
ELISA, antibiotic

susceptibility testing, ~ S

lllumina DNA
sequencing)
Images can be an
intermediate format

Intermediate formats
don’t always need
stored/further analysed.
Image analysis trivial
and/or hard-coded into
machine
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2-dimensional grayscale images: X-ray

- Use of x-rays to image bone and soft tissue
anatomy

- Pro: low radiation dose, cheap, common, quick

- Con: limited tissue density range

- Data type: grayscale image (2D matrix of
whiteness intensities), many formats but Digital
Imaging and Communications in Medicine (DICOM)

standard (size is device/scale dependent)
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2-dimensional colour images: Whole Slide Imaging

- Digital scanning/photography of

microscopy slides (including me— =
o r —= Ea_y
staining/fluorescence) ——
- Pro: sharing/embedded reports, automated = il
| /

analyses, reproducibility
- Con: large images (>10GB), sensitive to
scanner/preparation
- Data type: 3-channel colour image (3D
tensor with R,G,B intensities) ro*
TIF/JPEG2000/DICOM




Tomographic/2D slices: Computed Tomography (CT)

- X-rays in 1000-5000 slices/helical crmschine
pattern computationally processed
into pseudo-3D for any organ
system

- Pro: great capture of anatomical
detall, fast, broader than X-ray
(contrast capture of organ/vessels)

- Con: higher radiation dose,
relatively expensive

- Data Type: reconstructed grayscale
image (3D matrix of whiteness
intensities); multiple individual 2D

Motorized table
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2D video: Fluoroscopy

Coronary angiography

- X-ray collected in a time-series with
contrast medium used to guide
procedures or evaluate change over
time (angio.

- Pro: real-time imaging, widely
available, relatively cheap

- Con: more expensive and higher
radiation dose than X-ray alone

- Data: Series of 2D grayscale (3D
tensor): DICOM

https://www.hopkinsm
edicine.org/health/trea
tment-tests-and-thera
pies/cardiac-catheteri
zation




3D imaging: Magnetic Resonance Imaging (MRI)

- 3D images constructed from radiofrequency pulse perturbation of body atoms
(with a magnetic moment protons>neutrons) aligned by strong magnetic field (with
or without contrast). Can be optimised for blood flow (fMRI)

- Pro: detailed multiplanar/3D imaging without contrast, better depiction of soft-tissue
than CT, no radiation, painless

- Con: Expensive, noisy, lots of required space, susceptible to patient movement =>
can require sedation. o megre Magpeton:

magnet: 7
ndomly positioned Mostly aligned

- Data: 3D grayscale tensor; 2D

grayscale slices; 4D timeseries; ‘ ‘» ‘ ‘

DICOM
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4D imaging: Positron Emission Tomography (PET)

- Time-series of detected positrons Minimally conscious state  Fully conscious
from radiolabelled fludeoxyglucose
or O-15 to detect tissue/lesions with
high metabolic activity

- Pro: measures function, painless

- Con: poor anatomy resolution
(combine with CT/MRI), very
expensive, radioactive tracer

- Data: 4D tensor DICOM (5D colour
PET-CT/MRI or 3D fixed time-point).

- SPECT and fMRI also offer dynamic
functional imaging options




Many formats: Ultrasound
Uses sound waves and echo pattern [ W\/

to image internal structures (soft
tissue/organ/vessels)

Pro: real-time imaging, no radiation,

portable

Con: operator skill dependent,
patient anatomy, more expensive
than X-ray

Many types: elastography, doppler,

triplex, transvaginal, endoscopic
Data type: be rendered as 2D,
2D-slices, 3D or 4D! DICOM

C | z

10.1007/s00330-019-06331-4

Raw channel %
data :

N
I

&

Emitted O R
ultrasound wave

(@)
O e
® . o O
°© @ ©
@) O o
i O
\L/?O
Scatterers
in the medium

(a)

" s ‘
N 4 A i &

; ) A A 3 '/
At et ‘unﬂd‘v_« e R\ oty Vs L Rl

\ 7 kK — =S
(@ 9, e
@ 6\ @ o P ©
@0~ 00 | o=—Q
® @ @ © @ ©
O O | &6 0.
RS ——— = WA
e ) | )
7o ®,
Propagation of the
wave through the medium HAL Id: tel-01506629
(b) (c)

https://www.renalfellow.org/2020/12/07/basics-of-doppler-ultrasound-for-the-nephrologist-part-2/



Overview of medical image data

- Point measure (1D - single value): optical density/turbidity/fluorescence

- Project/Planar imaging (2D matrix of pixels): X-ray

- Tomographic/Multislice Imaging (3D tensor of pixels): a series of images
representing slices through a volume: CT

- 3-dimensional/VVolume (3D tensor of voxels): MRI

- Dynamic Series (4D tensor of voxels): fMRI/PET-CT/MRI

- 45 year old male presents to Emergency with abdominal pain: 100-1000s of
GB of imaging data in a variety of different imaging formats/modalities (mostly
as DICOM files)




DICOM Data Format

- Standardised file format split into preamble and
image information
- Preamble contains key metadata:
- Pixel depth: number of bits encoding each
pixel/voxel (e.g., 8/32/64-bits)
- Samples per Pixel/Number of Channels:
number of values encoding each pixel/voxel
e.g., monochrome = 1 channel, colour = 3
channels (R,G,B)
- Spatial resolution: size of smallest discernible
feature
- Other Embedded Metadata: capture
frequency/contrast/capture model/patient size
(important for normalising across your data)
- Image data: image matrix/tensors (nominally integer
only although scaling is possible)
- Many other proprietary formats exist but DICOM is
mostly successful as a standard

128 empty bytes

“DICM”

Meta information

Data Element

Data Element

Data Element

Data Element

Preamble

Data Set



What kind of analysis task would we want to
do using these images?



Lots of things we may want to do using medical images

Preprocessing and reconstruction

Prediction

== Troated
== Untreated

0 Time

Survival probability -

Monitoring

Lesion segmentation
and classification

Technica

y (O Benign

https://doi.org/10.1186/s13244-019-0832-5

@ Malignant

Denoising and quality enhancement

Organ segmentation

Image preprocessing: super
resolution, densification
Registration: align spatial
coordinates of images into 1
common system (PET + MRI)
Detection: highlighting specific
elements (anomaly/lesion)
Segmentation: delineation or
volume extraction of target object
(organ/lesion)

Classification: distinguish classes
of objects (benign vs malignant
lesion)

Monitoring: longitudinal
measurement of lesion (% of organ
impacted by lesion)

Prediction: predicting outcome
based on image (success of
chemotherapy)



Medical image data is intrinsically challenging

- Lots of modalities with very large image size (but small datasets)
- Non-standardised acquisition (varied devices, set-ups etc)

- Disease patterns in images are very long-tailed

- Labels are sparse and noisy

- Samples are heterogeneous and imbalanced

- Subjectivity in ground-truth

- Can be impossible to de-identify e.g., facial scans



Unsupervised learning

Example of unsupervised medical anomaly detection
Based on reconstruction, classify MRI scans
into healthy or diseased

from

Train GAN to reconstruct next 3 healthy MRI slices
previous 3 ones
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Label challenges require alternative training paradigms
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Label challenges require alternative training paradigms
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Label challenges require alternative training paradigms
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Label challenges require alternative training paradigms
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Label challenges require alternative training paradigms
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Traditional Computer Vision

- Thresholding: pixels >= certain set to max

- Edge detection: changes in brightness

- Segmenting: grouping thresholded areas enclosed
by edges

- Curve detection: edges adjacent to one another

- Optical flow: detection of movement

2 Iy

https://pyimagesearch.com/2021/04/28/open
cv-thresholding-cv2-threshold/



More complex traditional methods

Scale-Invariant Feature Transform
(SIFT)

Speeded Up Robust Features
(SURF)

BUT, manual feature engineering is
difficult, time-consuming, and often
doesn’t generalise well

Lll ’

Computer Vision

Mgorithms and Applications

i opringe

(A) Detected SIFT
points

(B) One feature

(C) Same feature as (B)
in a different ear

(D) Regions of
influence

10.1016/B978-0-12-814976-8.00005-1




How do we do analyse images without
feature engineering?



Deep Learning discovers feature representations

Classic Machine Learning

Deep Learning
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Artificial Neural Network
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Artificial Neural Network

Backpropagation: gradient of loss with respect to weights
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Convolutions capture spatial relations

fc_3 fc_4
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Convolutions capture spatial relations
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Convolutions capture spatial relations
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Convolutions capture spatial relations
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Convolutions capture spatial relations
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- Can use convolutions in more complex architectures (attention, resnets, transformers etc).



Aside: CNNs can be used for non-image spatial data
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Aside: CNNs can be used for non-image spatial data
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Aside: CNNs can be used for non-image spatial data
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- Graph neural networks
- Text data (semantic networks)



tial data
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Sequence alignments
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Didn’t you say training data is hard to get?



Making your data go further: augmentation

- Apply affine and pixel transformations to your data -> more training samples

Input Rotation  Flip Trans.  Shear Scaling Noise Brightness




Feels a bit like manual feature engineering,
can we automate this?



Yes! Generative Adversarial Network
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Can we use different image data then tune?



Transfer learning
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Can we make bad labels better?



Bad text labels, bad images -> why not embed both?

- OpenAl’s Contrastive Language-Image Pre-training (CLIP)
- Use 400 million images trawled from internet (with variable quality labels)
- Initial training: 30 days 592 GPUs -> $1,000,000 equivalent cost

1. Contrastive pre-training 2. Create dataset classifier from label text
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3. Use for zero-shot prediction
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S0, can we use these clinically?



Outperforming humans is possible

A Health-care professionals (58 tables)

B Deep learning models (103 tables)
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Outperforming humans is possible

Sensitivity

A Same out-of-sample validation sample
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Outperforming humans is possible

Sensitivity

B Matched internally validated samples
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Great, so why don’t we use these all the
time?



Legal hurdles are daunting but important

- Commercial software for medical images is a medical device

- Regulated as such.

- Regulatory frameworks actively changing/developing

- Requires explanatory power (still a work-in-progress for deep learning)
- Requires acceptance by clinicians




Learning Overview

- Many types of medical imaging data and their respective formats

- DICOM file format is ubiquitous but complex

- Medical imaging data analysis involves many different questions

- Lots of different machine learning paradigms are used to handle challenges of
medical image data

- Traditional computer vision approaches

- Deep learning enables learning features/representations

- Convolutions key to capturing spatial relationships

- Augmentation and generative models enable better training with limited data

- Transfer learning and joint-transformer models hugely expand training options

- Machine learning in medical image analysis is very promising but has several
major hurdles to broad acceptance



